Individual and Combined Use of Sawdust and Weed Mat Mulch in a New Planting of Northern Highbush Blueberry. II. Nutrient Uptake and Allocation

Author:

Strik Bernadine C.,Davis Amanda J.,Bryla David R.

Abstract

A 2-year trial was established in Oct. 2016 in western Oregon to evaluate the effects of various in-row mulch treatments on establishment of northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). The treatments included douglas fir [Pseudotsuga menziesii (Mirb.) Franco] sawdust, black weed mat (woven polypropylene groundcover), green weed mat, and sawdust covered with black or green weed mat. For the most part, plant nutrient concentration and content were unaffected by the color of the weed mat. In both years, mulching with weed mat over sawdust reduced soil NO3-N compared with weed mat alone. The only other soil nutrient affected by mulch was K, which was highest with sawdust mulch and intermediate with black weed mat alone in year 2. There were inconsistent effects of mulch on leaf nutrient concentration during the study. In 2018, leaf N concentration was lowest with black weed mat over sawdust. There were few mulch effects on nutrient concentrations in senescent leaves in both years and in harvested fruit in year 2. Mulch had greater effect on nutrient concentration in dormant plant parts after the second growing season than after the first, with the addition of sawdust under weed mat leading to significant differences for many nutrients in various plant parts compared with weed mat alone. Total uptake of N ranged from 12 kg·ha−1 (black weed mat) to 17 kg·ha−1 (black weed mat over sawdust) in year 1 and averaged 33 kg·ha−1 in year 2, with no effect of mulch. Fertilizer use efficiency for N was 8% to 12% in year 1 and 42% in year 2. Uptake of other nutrients was unaffected by mulch and, depending on the year, ranged from 1.3 to 4.3 kg·ha−1 P, 4.0 to 8.0 kg·ha−1 K, 2.1 to 4.9 kg·ha−1 Ca, and 1.0 to 1.5 kg·ha−1 Mg. Each of these other nutrients was derived from the soil or decomposing roots.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3