Effects of Substrate Salinity and Nutrient Levels on Physiological Response, Yield, and Fruit Quality of Habanero Pepper

Author:

Urrea-López Rafael,Díaz de la Garza Rocío I.,Valiente-Banuet Juan I.

Abstract

Although habanero peppers (Capsicum chinense, Jacq.) are highly appreciated as a result of their organoleptic and pungency properties, the crop faces edaphic stresses throughout Mexico. A study was conducted to determine how the photosynthetic parameters, vegetative growth, yield, and fruit quality of the plant change in response to suboptimal conditions in the substrate. Habanero plants were grown in an inert substrate (perlite) and exposed to increased salinity levels (4 and 7 dS·m−1) and reduced nitrogen and phosphorus conditions. Plants grown with a Hoagland-based solution were used as controls. High salinity conditions reduced the light-saturated photosynthetic rates (64% of the control) but did not compromise yield or fruit quality. This effect was possibly the result of the addition of Ca2+, which reduced salinity-induced calcium deficiency. Although comparable low nitrogen levels in previous studies were shown to cause a severe reduction in plant viability, in our study, low nitrogen reduced the light-saturated photosynthetic rates (47% of the control) and shoot:root ratio (67% of the control) but did not significantly affect yield or fruit quality. Low nitrogen and 7-dS·m−1 treatments increased fructose and glucose content (increases of 27% and 21%, respectively). Low phosphorus significantly affected plant growth and yield and reduced fructose content (73% of the control). Plants were not sensitive to low nitrogen and high salinity, possibly as a result of the use of nitrate-based fertilizers and the addition of calcium, respectively. These results provide guidelines for habanero pepper production under suboptimal edaphic conditions.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3