Author:
Vaid Tasneem M.,Runkle Erik S.,Frantz Jonathan M.
Abstract
In protected environments, temperature is often regulated to produce ornamental crops for specific market dates. Temperature primarily controls plant developmental rate and thus production time, but it can also interact with light quantity to affect crop quality attributes such as flower number, branching, and biomass accumulation. We quantified how mean daily temperature (MDT) between 14 and 26 °C influenced quality characteristics of 15 common bedding plant crops. American marigold (Tagetes erecta), cup flower (Nierembergia caerulea), diascia (Diascia barberae), flowering tobacco (Nicotiana alata), geranium (Pelargonium ×hortorum), globe amaranth (Gomphrena globosa), heliotrope (Heliotropium arborescens), nemesia (Nemesia foetans), New Guinea impatiens (Impatiens hawkeri), osteospermum (Osteospermum ecklonis), pot marigold (Calendula officinalis), snapdragon (Antirrhinum majus), stock (Matthiola incana), and torenia (Torenia fournieri) were grown under two mean daily light integrals (9.0 and 18.0 mol·m−2·d−1) in five environmentally controlled greenhouse compartments with a 16-h photoperiod. As MDT increased from 14 to 26 °C, flower or inflorescence number decreased for nearly all crops. In six crops, flower or inflorescence size decreased as MDT increased, whereas in five crops, there was an initial increase in flower size with an increase in MDT and then a subsequent decrease at MDT greater than 20 °C. In 10 of the crops, shoot weight at flowering decreased linearly or quadratically with an increase in MDT. Branch number was inversely related with MDT in eight crops and was positively correlated with an increase in flower number. We conclude that in a majority of the crops studied, plant quality decreased as the MDT increased, which can at least partially be attributed to earlier flowering at the higher MDTs. Therefore, there is often a tradeoff between faster crop timing and higher plant quality, especially for plants with a low estimated base temperature (Tmin) for development.
Publisher
American Society for Horticultural Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献