Use of Controlled Water Deficit to Regulate Poinsettia Stem Elongation

Author:

Alem Peter,Thomas Paul A.,van Iersel Marc W.

Abstract

Height regulation is crucial in poinsettia (Euphorbia pulcherrima) production for both aesthetics and postharvest handling. Controlled water deficit (WD) offers a potential alternative to plant growth retardants (PGRs) for poinsettia height regulation. We have previously shown that WD can be used to regulate poinsettia stem elongation. However, it is not clear how WD can be used to achieve different plant heights and how it affects aesthetic qualities such as bract size. Our objectives were to determine whether a range of plant heights can be achieved using controlled WD and to investigate possible adverse effects of WD on shoot morphology. Rooted cuttings of poinsettia ‘Classic Red’ were transplanted into 15-cm pots filled with 80% peat:20% perlite (v/v) substrate. Three target heights (43.2, 39.4, and 35.6 cm) were set at pinching (Day 27) and height tracking curves were used to monitor plants throughout the production cycle (77 days from pinching to finish). Substrate volumetric water content (θ) was maintained at 0.40 m3·m−3 (a matric potential of ≈–5 kPa) during well-watered conditions and reduced to 0.20 m3·m−3 (≈–75 kPa) when plants were taller than desired based on the height tracking curves. Control plants were maintained at a θ of 0.40 m3·m−3 throughout the study and had a final height of 51.2 cm. Plants with the 35.6-cm target height exceeded the upper limits of the height tracking curve despite being kept at a θ of 0.20 m3·m−3 for 70 days and had a final height of 39.8 cm. The final plant heights in the 39.4- and 43.2-cm target height treatments were 41.3 and 43.5 cm, respectively, within the 2.5-cm margin of error of their respective target heights. Relative to control plants, bract area was reduced by 53%, 47%, and 31% in the 35.6-, 39.4-, and 43.2-cm target height treatments, respectively. Our results indicate that WD can be an effective method of height control, but WD may also decrease bract size.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3