Restricting Phosphorous Can Manage Growth and Development of Containerized Sweet Basil, Dill, Parsley, and Sage

Author:

Currey Christopher J.,Metz Vincent C.,Flax Nicholas J.,Litvin Alex G.,Whipker Brian E.

Abstract

The objective of this research was to quantify the effects of phosphorous (P) concentrations on the growth, development, and tissue mineral nutrient concentrations of four popular culinary herbs commonly grown in containers. Seedlings of sweet basil (Ocimum basilicum ‘Italian Large Leaf’), dill (Anethum graveolens ‘Fernleaf’), parsley (Petroselinum crispum ‘Giant of Italy’), and sage (Salvia officinalis) were individually transplanted to 11.4-cm-diameter containers filled with soilless substrate comprising canadian sphagnum peatmoss and coarse perlite. Upon transplanting and throughout the experiment, seedlings were irrigated with solutions containing 0, 5, 10, 20, or 40 mg·L−1 P; all other macro- and micronutrient concentrations were the same across P concentrations. Plants were grown for 4 weeks in a greenhouse; after that time, data were collected. Relationships between height and width and P concentrations were nonlinear for all four species; height and width increased as P increased to more than 0 mg·L−1 until the species-specific maxima; after that time, no further increase occurred. The same trend was observed for the branch length of sweet basil and sage, and for internode length, leaf area, and shoot dry mass of all four species. Although visible P deficiency symptoms were observed for plants provided with 0 mg·L−1 P, there were no signs of P deficiency for plants provided with ≥5 mg·L−1 P, even though tissue P concentrations were below the recommended sufficiency ranges. As a result of this research, containerized sweet basil, dill, parsley, and sage can be provided with 5 to 10 mg·L−1 P during production to limit growth and produce plants without visible nutrient deficiency symptoms that are proportional to their containers.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3