Winter Broccoli and Cauliflower under Organic High Tunnels in a Humid, Subtropical Climate

Author:

O’Connell Suzanne,Tate Robert

Abstract

There is a lack of information related to adapting high tunnel systems to humid, subtropical climates in the Southeastern United States, resulting in a disadvantage for their use to extend growing seasons and meet the increasing demand for local horticulture products. This research project explored the possibility of growing organic broccoli and cauliflower (Brassica oleracea L.) under high tunnels during two consecutive fall/winter seasons in northeast Georgia (USDA plant hardiness zone 8a), particularly evaluating questions related to crop feasibility, planting dates and cultivar choices. Marketable yields for high tunnel broccoli ranged from ≈11,800 to 15,800 kg·ha−1 and were not consistently affected by either planting date or cultivar type. Broccoli required an additional 8–45 days to reach maturity compared with seed catalog estimates with harvesting occurring during mid-December to mid-January. Marketable yields for high tunnel cauliflower ranged from ≈8600 to 26,000 kg·ha−1 and were affected primarily by the cultivar type. Cauliflower required an additional 19–56 days to mature with harvesting occurring during the entire month of January. The first season was cooler than the second with the lowest growing degree days (GDD) units accumulated during the months of January and February. Differences in air temperature at the crop canopy between the high tunnel system and open field were largely related to high tunnel ventilation protocols that changed as the season progressed. An average heat gain of 7 to 8 °C under the high tunnels at crop canopy height was documented on the coldest days and an average of 1 °C gain on the warmest days compared with the open field. Overall, winter broccoli appeared more adaptable to high tunnels than cauliflower but production of both crops may be possible if planting dates and cultivar types are taken into account for the region.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3