Impact of Shade and Fogging on High Tunnel Production and Mineral Content of Organically Grown Lettuce, Basil, and Arugula in Georgia

Author:

Laur Savanah,da Silva Andre Luiz Biscaia RibeiroORCID,Díaz-Pérez Juan CarlosORCID,Coolong Timothy

Abstract

This study evaluated the impact of shade cloth and fogging systems on the microclimate at the plant canopy level and yield of basil (Oscimum basilicum L.), arugula (Eruca vesicaria subsp. Sativa L.), and lettuce (Lactuca sativa L.) planted in mid-September and early October in high tunnels. Fogging systems were installed at canopy level in plots within shaded (30%) and non-shaded high tunnels. Average air temperatures in the shaded high tunnels were 0.9 °C lower than non-shaded high tunnels during the day. Shade cloth significantly reduced soil temperatures during the day and night periods by 1.5 °C and 1.3 °C, respectively, compared to non-shaded treatments. Fogging systems did not have an impact on air temperature, soil temperature, or relative humidity, but did increase canopy leaf wetness. Shade and fogging did not impact the yield of any of the crops grown. Yield was impacted by planting date, with earlier planting result in higher yields of lettuce and basil. Yields for arugula were greater during the second planting date than the first. Planting date and shade cloth interacted to affect the concentrations of macronutrients.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference40 articles.

1. Overview of the Use of High Tunnels Worldwide

2. Horticultural Crop Production in High Tunnels in the United States: A Snapshot

3. Characterization of the Florida fresh fruit and vegetable industry using hydroponic systems or protected agriculture structures;Hochmuth;Univ. Florida Inst. Food Agr. Sci. Bul.,2014

4. The Hoophouse Handbook;Byczynski,2003

5. The Winter Harvest Manual;Coleman,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3