Seedling Growth of Catawba Rhododendron. II. Photosynthesis and Carbohydrate Accumulation and Export

Author:

Rowe D. Bradley,Warren Stuart L.,Blazich Frank A.,Pharr D. Mason

Abstract

Catawba rhododendron (Rhododendron catawbiense Michx.) seedlings of two provenances, Johnston County, N.C. (35°45′N, 78°12′W, elevation = 67 m), and Yancey County, N.C. (35°45′N, 82°16′W, elevation = 1954 m), were grown in controlled-environment chambers for 18 weeks with days at 18, 22, 26, or 30C in factorial combination with nights at 14, 18, 22, or 26C. Seedlings of the higher-elevation provenance generally exhibited higher net leaf photosynthetic rates (PN)s than those from the lower elevation at all temperature combinations. Thus, it appears seedlings of the high-elevation provenance possess greater relative thermotolerance, expressed as net photosynthesis, than the low-elevation provenance. Eighty-seven days after initiation (DAI) of the experiment, PN showed a quadratic response to increasing day temperature, with the maximum occurring at 22C, whereas PN decreased linearly with increasing night temperature. At 122 DAI, PN increased linearly with increasing day temperature with nights at 22 and 26C. Highest PNs were at 30/22C and 26/22C. Carbohydrate export increased with increasing day temperature, whereas the response to night temperature was minimal. High levels of nonstructural carbohydrates occurred at thermoperiods (22/22C and 26/22C) that optimize seedling growth. However, definitive trends relating seedling growth to PNs, leaf carbohydrate levels, or to the amount of carbohydrate exported from the leaves were difficult to generalize due to numerous day × night interactions.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining the minimum daily light integral for forcing of azalea (Rhododendron simsii);Scientia Horticulturae;2014-10

2. Heat Tolerance of Selected Species and Populations of Rhododendron;Journal of the American Society for Horticultural Science;1995-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3