Heat Tolerance of Selected Species and Populations of Rhododendron

Author:

Ranney Thomas G.,Blazich Frank A.,Warren Stuart L.

Abstract

Temperature sensitivity of net photosynthesis (PN) was evaluated among four taxa of rhododendron including Rhododendron hyperythrum Hayata, R. russatum Balf. & Forr., and plants from two populations (northern and southern provenances) of R. catawbiense Michx. Measurements were conducted on leaves at temperatures rauging from 15 to 40C. Temperature optima for PN ranged from a low of 20C for R. russatum to a high of 25C for R. hyperythrum. At 40C, PN rates for R. hyperythrum, R. catawbiense (northern provenance), R. catawbiense (southern provenance), and R. russatum were 7.8,5.7,3.5, and 0.2 μmol·m-2·s-1, respectively (LSD0.05 = 1.7). Rhododendron catawbiense from the southern provenance did not appear to have greater heat tolerance than plants from the northern provenance. Differences in dark respiration among taxa were related primarily to differences in tissue weight per unit leaf surface area. Temperature coefficients (Q5) for respiration did not vary in temperature response among taxa. Differences in heat tolerance appeared to result from a combination of stomatal and nonstomatal limitations on PN at high temperatures.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3