Suitability of Sphagnum Moss, Coir, and Douglas Fir Bark as Soilless Substrates for Container Production of Highbush Blueberry

Author:

Kingston Patrick H.,Scagel Carolyn F.,Bryla David R.,Strik Bernadine

Abstract

The purpose of the present study was to investigate the suitability of different soilless substrates for container production of highbush blueberry (Vaccinium sp.). Young plants of ‘Snowchaser’ blueberry were grown in 4.4-L pots filled with media containing 10% perlite and varying proportions of sphagnum moss, coconut (Cocos nucifera L.) coir, and douglas fir [Pseudotsuga menziesii Mirb. (Franco)] bark, as well as a commercially available mix of peatmoss, perlite, and other ingredients for comparison. Total plant dry weight (DW) was similar among the treatments at 72 days after transplanting, but at 128 days, total DW was nearly twice as much in the commercial mix and in media with ≥60% peat or coir than in media with ≥60% bark. Inadequate irrigation likely played a role in poor plant growth in bark. Bark had lower porosity and water holding capacity than peat, coir, or the commercial mix and, therefore, dried quickly between irrigations. Bark also reduced plant uptake efficiency of a number of nutrients, including N, P, K, S, Ca, Mg, Mn, B, Cu, and Zn. Uptake efficiency of P, K, and Mg also differed between plants grown in peat and coir, which in most cases was a function of the initial concentration of nutrients in the media. Before planting, peat had the highest concentration of Mg and Fe among the media, whereas coir had the highest concentration of P and K. Leachate pH was initially lowest with peat and highest with coir but was similar among each of the media treatments by the end of the study. Electrical conductivity (EC) of leachate never exceeded 0.84 dS·m−1 in any treatment. Overall, peat and coir appear to be good substrates for container production of highbush blueberry. Bark, on the other hand, was less suitable, particularly when it exceeded 30% of the total media composition.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3