Allelopathic Effects of Pinus halepensis Needles on Turfgrasses and Biosensor Plants

Author:

Nektarios Panayiotis A.,Economou Garyfalia,Avgoulas Christos

Abstract

Fresh, senesced, and decaying pine needles from Pinus halepensis were evaluated for their allelopathic potential on Festuca arundinacea, Cynodon dactylon and the biosensor plants Avena sativa and Lemna minor through in vivo and in vitro studies. The in vivo study was performed in growth chambers, using 6, 12, and 18 g of pine needle tissue mixed with screened perlite as a substrate. The effects of the different pine needle types were evaluated by determining the total root length, total root surface, root dry weight, total shoot length, total shoot surface, and shoot dry weight. The in vitro study was performed in Petri dishes where seeds from each species were subjected to an increasing concentration of pine needle extract. The extracts were obtained from pine needle ground tissue that was diluted with water and either shacked at room temperature or placed in water bath at 40 °C for 24 h. The evaluation of the allelopathic potential was performed with the determination of radicle length. The allelopathic potential of the pine needle tissues was confirmed with bioassays using oat (A. sativa) and duckweed (L. minor). The results strongly suggested the allelopathic potential of the pine needle tissue, being more pronounced in the fresh, moderate in the senesced, and low in the decaying pine needles. The allelopathic substances were species-specific, and the inhibition resistance of the species tested followed the order F. arundinacea > C. dactylon > A. sativa. The inhibition of the L. minor suggested that the water soluble phytotoxic compounds were inhibitors of Photosystem II.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3