Effect of the Intensity and Spectral Quality of LED Light on Yield and Nitrate Accumulation in Vegetables

Author:

Nájera Cinthia,Urrestarazu Miguel

Abstract

At present, trends exist in the production of food for the benefit of human health. The negative effect of an excessive intake of nitrates accumulated in vegetables is well known, causing worldwide concern. Light plays an important role in the accumulation of this ion. The objective of this work was to evaluate the effect of light-emitting diode (LED) spectra used in artificial lighting for horticulture on the accumulation of nitrates in leafy and root vegetables compared with the effects with white LED lights. Two independent experiments were carried out in the culture chamber. In Expt. 1, six species of nitrate accumulators were used: arugula, spinach, lettuce, endive, radish, and beetroot. In Expt. 2, four lettuce cultivars were used. In both experiments, the treatments were two spectra—T1 = AP67 Valoya® and the control (T0) = white Roblan®—at two illumination intensities [high (H) and low (L)] with a 16/8-hour (day/night) photoperiod. The fresh biomass and the concentration of nitrates were measured at 35 days of treatment posttransplantation. An important and significant increase of 50% of the mean fresh weight was obtained in all the species when the light intensity increased. Except for spinach in the low-intensity treatment, all nitrate content values were less than the maximum limits of European regulation. The nitrate content generally decreased with increasing intensity, and this benefit was greater in the T1 treatment. T0 showed a reduction in the nitrate content compared with T1 in only one case, which was the H in beetroot. A large and significant reduction was observed in the nitrate content in T1. For L in Expt. 1, the nitrate decrease was 18%, whereas for H, it was 35%. In Expt. 2, the decrease in the nitrate content was 10% for L and 21% for H. A greater benefit was derived when using the photosynthetic spectrum in the growing chambers under low light intensity.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3