Screening of Lettuce Germplasm for Agronomic Traits under Low Water Conditions

Author:

Eriksen Renée L.,Knepper Caleb,Cahn Michael D.,Mou Beiquan

Abstract

After a preliminary screening of over 3500 cultivars, we selected 200 butterhead, cos, crisphead, leaf, and stem lettuce (Lactuca sativa L.) and wild prickly lettuce (Lactuca serriola L.) varieties to test under high water (150% evapotranspiration [ET]) and low water (50% ET) conditions in the field, and tracked commercially relevant traits related to growth and marketability, maturity, and physiology. Plants typically reduced growth and appeared to reallocate developmental resources to achieve maturity quickly, as indicated by traits such as increased core length. This strategy may allow them to complete their life cycle before severe drought stress proves lethal. Although most cultivars experienced a reduction in growth under low water conditions relative to high water conditions, some cultivars had a significantly reduced yield penalty under stress conditions. Among the different types of lettuce, the fresh weight (FW) of cos cultivars was most affected by drought stress, and the FW of leaf lettuce was least affected. Cos cultivars tended to bolt early. Crisphead cultivars Cal-West 80, Heatmaster, and Marion produced large heads and did not bolt under low water treatments, and butterhead cultivars Buttercrunch and Bibb also produced relatively large heads with very little bolting and no signs of tipburn. The four green leaf cultivars Slobolt, Grand Rapids, Western Green, and Australian showed no statistically significant difference in FW among high and low water treatments in multiple trials, and may be good choices for growers who wish to minimize losses under reduced irrigation. The identification of potentially drought-tolerant varieties and the information from this study may be helpful for cultivar selection by growers under drought conditions, but this study also serves as a step forward in the genetic improvement of lettuce to drought stress.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3