Response of Cyanic and Acyanic Lettuce Cultivars to an Increased Proportion of Blue Light

Author:

Cammarisano LauraORCID,Körner OliverORCID

Abstract

Indoor crop cultivation systems such as vertical farms or plant factories necessitate artificial lighting. Light spectral quality can affect plant growth and metabolism and, consequently, the amount of biomass produced and the value of the produce. Conflicting results on the effects of the light spectrum in different plant species and cultivars make it critical to implement a singular lighting solution. In this study we investigated the response of cyanic and acyanic lettuce cultivars to an increased proportion of blue light. For that, we selected a green and a red leaf lettuce cultivar (i.e., ‘Aquino’, CVg, and ‘Barlach’, CVr, respectively). The response of both cultivars to long-term blue-enriched light application compared to a white spectrum was analyzed. Plants were grown for 30 days in a growth chamber with optimal environmental conditions (temperature: 20 °C, relative humidity: 60%, ambient CO2, photon flux density (PFD) of 260 µmol m−2 s−1 over an 18 h photoperiod). At 15 days after sowing (DAS), white spectrum LEDs (WW) were compared to blue-enriched light (WB; λPeak = 423 nm) maintaining the same PFD of 260 µmol m−2 s−1. At 30 DAS, both lettuce cultivars adapted to the blue light variant, though the adaptive response was specific to the variety. The rosette weight, light use efficiency, and maximum operating efficiency of PSII photochemistry in the light, Fv/Fm’, were comparable between the two light treatments. A significant light quality effect was detected on stomatal density and conductance (20% and 17% increase under WB, respectively, in CVg) and on the modified anthocyanin reflectance index (mARI) (40% increase under WB, in CVr). Net photosynthesis response was generally stronger in CVg compared to CVr; e.g., net photosynthetic rate, Pn, at 1000 µmol m−2 s−1 PPFD increased from WW to WB by 23% in CVg, compared to 18% in CVr. The results obtained suggest the occurrence of distinct physiological adaptive strategies in green and red pigmented lettuce cultivars to adapt to the higher proportion of blue light environment.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3