Glycosylated Aroma Compound Responses in ‘Riesling’ Wine Grapes to Cluster Exposure and Vine Yield

Author:

Meyers James M.1,Sacks Gavin L.2,Vanden Heuvel Justine E.1

Affiliation:

1. 1Department of Horticulture, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456

2. 2Department of Food Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456

Abstract

Concentrations of aroma precursor compounds in ‘Riesling’ wine grapes (Vitis vinifera) are reported to correlate with fruit zone cluster exposure, although optimal cultural influences with respect to exposure timing and canopy assessment methods have not been established. To determine the impact of cluster exposure on concentrations of potential aroma compounds, correlations between light exposure metrics during the growing season and relative concentrations of eight representative aroma compounds at harvest were determined. The aroma compounds were carbon-13 (C13) norisoprenoids [1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), β-damascenone, and vitispirane], monoterpenes (linalool oxide, α-terpineol), and phenolics (4-vinylguaiacol, vanillin and eugenol). Cluster exposure was determined using metrics of varying spatial precision [percent interior cluster (PIC), cluster exposure layer (CEL), ln(CEL), cluster exposure flux availability (CEFA), and the percent ambient photosynthetic photon flux (PPF)] at two sites and two phenological stages (fruit set and veraison) in two consecutive seasons (2008 and 2009). Pairwise combinations of cluster exposure metrics and compounds resulted in 360 permutations, of which 22 were significant. Response data suggested that none of the compounds studied respond to variable cluster exposure levels below 20% of ambient sunlight (CEFA < 0.2), and that low cluster exposure may be particularly effective in minimizing C13 norisoprenoid concentrations at harvest. Yield components were also tested but found to have lower R2 values compared with cluster exposure metrics. Active canopy management, in which vine vigor and fruit exposure are independently controlled, is likely to be more effective in influencing potential aroma compounds than selectively harvesting for naturally occurring variation in cluster exposure. In comparing the relative predictive strength among metrics, CEFA ≅ ln(CEL) > CEL > PIC ≅ percent PPF, suggesting that cluster exposure metrics with greater spatial sensitivity are more effective for establishing light response curves.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3