A Daylight Climate Chamber for Testing Greenhouse Climate Control Strategies and Calculating Canopy Carbon Dioxide Exchange

Author:

Jensen Lise T.,Aaslyng Jesper M.,Rosenqvist Eva

Abstract

A daylight climate chamber was designed with the aim of testing new greenhouse climate control strategies on a small scale. Precise control and measure ment of the chamber climate and long-term measurement of canopy carbon dioxide (CO2) exchan ge was possible. The software was capable of simulating a climate computer used in a full-scale greenhouse. The parameters controlled were air temperature, CO2 concentration, irradiance, air flow, and irrigation. The chamber was equipped with a range of sensors measuring the climate in the air of the chamber and in the plant canopy. A chamber perfor mance experiment with chrysanthemum (Chrysanthemum grandiflorum `Coral Charm') plants grown in perlite was carried out over the course of 3 weeks. Five air temperature treatments at a day length of 13 hours were carried out, all with the same 24-hour mean temperature of 20 °C, but different day temperatures (18.0 to 25.1 °C) and night temperatures (14.0 to 22.4 °C). Rate of canopy CO2 exchange in the chambers was calculated. In the range of day temperatures used, rates of canopy photosynthesis were almost equal. The results showed that leaf area and plant dry weight after 3 weeks were not significantly different among temperature treatments, which is promising for further investigations of how climate control can be used to decrease energy consumption in greenhouse production.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3