Canopy Photosynthesis and Time-of-day Application of Supplemental Light

Author:

Markvart Jakob,Rosenqvist Eva,Sørensen Helle,Ottosen Carl-Otto,Aaslyng Jesper M.

Abstract

There is increasing use of electricity for supplemental lighting in the northern European greenhouse industry. One reason for this may be to secure a high growth rate during low-light periods by an attempt to increase net photosynthesis. We wanted to clarify which period of the day resulted in the best use of a 5-h supplemental light period for photosynthesis and growth. The periods tested were supplemental light during the night, day, morning, and evening. The experiments were carried out in daylight climate chambers measuring canopy gas exchange. The air temperature was 25 °C and the CO2 level ≈900 ppm. Vegetative chrysanthemum was used, because this species responds quickly to change in light level. The leaf areas of the plant canopies were nondestructively measured each week during the 4-week experimental period. The fact that the quantum yield of photosynthesis is greater at low than at high light intensities favors the use of supplemental light during the dark period, but growth measured as dry weight of the treated plants at the end of the experiments was not significantly different given identical light integrals of the treatments. However, one experiment indicated that increased time with dark hours during day and night (24 h) might decrease net photosynthesis. The assimilation per unit leaf area was approximately the same during times of sunlight through a diffusing screen at 100 μmol·m−2·s−1 of photosynthetic photon flux (PPF) as during times of supplemental (direct) light application at PPF of 200 μmol·m−2·s−1 by high-pressure sodium lamps. We conclude that during the winter and periods of low light intensities, the daily carbon gain does not depend on the time of supplemental light application, but is linked to the total light integral. However, extended time with dark hours during day and night (24 h) might be a disadvantage because of longer periods with dark respiration and subsequent loss of carbon. Our results indicate that during times of low light conditions, it is not necessary to include factors such as the timing of supplemental lighting application to achieve higher net photosynthesis in climate control strategies.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3