Evaluation of Antitranspirants for Enhancing Temporary Water Stress Tolerance in Bedding Plants

Author:

Park Suejin,Mills Sarah A.,Moon Youyoun,Waterland Nicole L.

Abstract

Water stress during shipping and retailing reduces the postproduction quality and marketability of bedding plants. Antitranspirants can temporarily prevent plants from wilting by either physically blocking stomata or physiologically inducing stomatal closure, limiting transpirational water loss from leaves. The goal of this research was to evaluate the efficacy of commercially available antitranspirants on enhancing temporary water stress tolerance in bedding plants. Two physical antitranspirants [β-pinene polymer (βP) and vinyl-acrylic polymer (VP)], and three physiological antitranspirants [two sugar alcohol-based compounds (SACs) and a biologically active form of abscisic acid (s-ABA)] were applied to begonia (Begonia semperflorens-cultorum), new guinea impatiens (Impatiens hawkeri), impatiens (Impatiens walleriana), petunia (Petunia ×hybrida), african marigold (Tagetes erecta), and french marigold (Tagetes patula). Physical antitranspirants were sprayed on foliage and physiological antitranspirants were drenched to the media. All antitranspirants were applied at half (0.5×), equal to (1×), or twice (2×) the manufacturer’s recommended rate. Extended shelf life was observed when βP or s-ABA was applied. Treatment with βP increased the shelf life of impatiens and african marigold by 1 and 1.3 days compared with control plants, respectively. The application of βP at 2× was more effective at delaying visual wilting than at lower rates (0.5× and 1×) in african marigold. Applications of s-ABA delayed wilting by 1.3 to 3.7 days in all tested cultivars. The shelf lives of impatiens and petunia treated with s-ABA at 2× were extended the most by 3.7 and 3.0 days compared with control plants, respectively. A rapid reduction of stomatal conductance (gS) was observed within 4 hours of βP or s-ABA application in plants showing delayed wilting symptoms. s-ABA treatment appeared to cause marginal leaf chlorosis in impatiens, whereas application of βP damaged the opened flowers in all tested cultivars. The application of VP or SACs did not extend shelf life in any treated plants. These results suggest that foliar application of βP on selected species and treatment with s-ABA on most of species would allow bedding plants to withstand water deficit during shipping and/or retailing.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3