Preparing for the Worst: Enhancing Seedling Traits to Reduce Transplant Shock in Semi-Arid Regions

Author:

Mainhart Douglas E.12ORCID,Christoffersen Bradley O.1ORCID,Thompson R. Alexander3ORCID,Reemts Charlotte M.4,Fierro-Cabo Alejandro12ORCID

Affiliation:

1. School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA

2. School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Boulevard, Brownsville, TX 78520, USA

3. Department of Life and Environmental Sciences, University of California Merced, 5200 North Lake Rd, Merced, CA 95343, USA

4. The Nature Conservancy, 2632 Broadway 2015, San Antonio, TX 78215, USA

Abstract

The spatial extent of semi-arid hot regions is forecasted to grow through the twenty-first century, complicating restoration and reforestation plans. In arid and semi-arid climates, seedlings are more susceptible to transplant shock due to lower soil moisture throughout the year. Determining strategies to reduce seedling stress and improve survival post-planting will be paramount to continued reforestation efforts in a changing climate. We quantified seedling physiological, morphological, and field performance (mortality and growth) response for five species native to the semi-arid region of South Texas (Erythrina herbacea L., Celtis pallida Torr., Fraxinus berlandieriana DC, Malpighia glabra L., and Citharexylum berlandieri B.L Rob) to an antitranspirant (abscisic acid), drought, and elevated CO2. We examined post-treatment seedling gas exchange, non-structural carbohydrates, osmolality, root structure, and stomatal density and evaluated mortality and growth rate on a sample of the treatment population. For elevated CO2 and drought hardening treatments, seedling gas exchange, solute content, specific root length, and stomatal density varied by species, while abscisic acid strongly reduced transpiration and stomatal conductance in all species. However, these physiological and morphological differences did not translate to reduced mortality or improved growth rate due to high herbivory and above-normal precipitation after planting precluding seedlings from stress. We conclude that the simpler antitranspirant approach, rather than the more logistically challenging eCO2, has the potential to reduce drought-related transplant shock but requires more widespread testing.

Funder

The Nature Conservancy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3