Survey of How Hanging Baskets Influence the Light Environment at Lower Crop Level in Ornamental Greenhouses in Ontario, Canada

Author:

Llewellyn David1,Zheng Youbin12,Dixon Mike1

Affiliation:

1. 1School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

2. 2Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON L0R 2E0, Canada

Abstract

Hanging basket (HB) production alters the light environment in the lower canopy of ornamental greenhouses by intercepting and altering the spectral quality of incoming light. If shading is sufficiently high, the quality of the lower crops can be reduced. This work investigated changes in light quantity and quality at the lower crop level caused by HB production in Ontario, Canada. Light sampling occurred at three commercial greenhouse facilities throughout the Spring 2012 HB season. The greenhouses represented a range of HB densities (1.8, 2.4, and 3.0 baskets/m2) and different HB canopy architectures (one, two, and three tiers of HBs). Light samples were taken at three fixed locations within each greenhouse facility: outside, HB level, and lower crop level. Photosynthetically active radiation (PAR) was logged continuously at each location within each greenhouse environment. Spectral scans were made at each sampling location, within each greenhouse facility, at various times throughout the season to assess how HB production altered the red to far red ratio (R:FR) at lower crop level. As the season progressed, outdoor daily light integrals (DLIs) more than doubled from <20 to >40 mol·m−2·d−1. Light reduction caused by polyethylene films and structural components varied among locations, but remained steady throughout the season, averaging 48.3% for the three locations. As the HB crops matured, the rate of decrease in PAR at lower crop level varied according to facility and HB density with mean reductions of 42.5%, 32.6%, and 37.7% for the one-, two-, and three-tiered facilities, respectively. Mean lower crop level DLIs were all very similar, between 9.4 and 9.9 mol·m−2·d−1. Accordingly, there may be insufficient light below HB canopies to produce high-quality crops of many varieties of bedding plants that are commonly grown in Ontario. The one- and two-tiered systems reduced the R:FR at lower crop level by 14% and 10%, respectively, whereas the three-tiered system caused no reduction. More work is required to determine if the observed far red shift is sufficient to alter crop quality. These case studies provide a backdrop against which to help determine and interpret horticultural management strategies for a variety of greenhouse crops.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3