Inverse Methods to Improve Accuracy of Water Content Estimates from Multi-offset GPR

Author:

Parsekian Andrew D.12

Affiliation:

1. Department of Geology and Geophysics, University of Wyoming, Laramie, WY

2. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY

Abstract

Ground penetrating radar (GPR) is a powerful hydrogeophysical tool for estimating porosity and water content of geologic materials using radar wave velocities and appropriate petrophysical relations. In substrates with more than one layer of interest, surface-based multi-offset measurements require careful analysis to accurately retrieve physical properties for each layer. Frequently, Dix inversion is used to calculate interval velocities, however the assumptions and limitations of this approach are widely known. In particular for survey geometries and targets encountered with GPR, the assumptions inherent to Dix inversion are readily violated, and therefore inverse modeling is required to avoid velocity error. While the impact on velocity incurred by violating the assumptions of Dix inversion is well understood, the effects on water content estimates have not been widely reported and are therefore the subject of this work. In a subsurface representative of an unsaturated zone overlying an aquifer, error in excess of 50% in water content due to violating the assumptions of Dix inversion is demonstrated. Examples are shown using raytracing inversion to solve for subsurface water content structure that avoids the errors inherent to Dix inversion. These results are intended to underscore the importance of minimizing assumptions and using more correct physics when analyzing multi-offset GPR data, particularly due to the large potential errors that may be encountered if water content estimation is the main objective.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference36 articles.

1. Aster, R.C. Borchers, B. and Thurber, C.H. 2011, Parameter estimation and inverse problems (Vol. 90): Academic Press.

2. Baker, G.S. Jordan, T.E. and Pardy, J. 2007, An introduction to ground penetrating radar (GPR): Special papers – Geological Society of America, 432, 1.

3. Effects of the transition zone above a water table on the reflection of GPR waves

4. Errors in Radar CMP Velocity Estimates Due to Survey Geometry, and Their Implication for Ice Water Content Estimation

5. Depth characterization of shallow aquifers with seismic reflection, Part I—The failure of NMO velocity analysis and quantitative error prediction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3