Study on Dynamic Response of Blocking Structure and Debris Flow Impulsive Force considering Material Source Erosion

Author:

Li Bai-Long1ORCID,Wang Chang-Ming1ORCID,Li Yan-Ying1ORCID

Affiliation:

1. College of Construction Engineering Jilin University 130021 Changchun China jlu.edu.cn

Abstract

Abstract The erosion of debris flows on the material source will affect the movement and impact of the debris flow. This paper adopted the coupled SPH-DEM-FEM to establish a complex dynamic model of the particle-fluid-erosion-structure of the debris flow and to assess the impact of erosion and sedimentation and analyse the dynamic response of the retaining structure of the debris flow. The strain-softening model was adopted to simulate the transformation of the debris flow body from the solid state to the transition state and finally into the liquid state. The coupled numerical analysis completely reproduces the debris flow erosion test, fitting the debris flow shape and thickness profile well. The impact process of the debris flow, the impact height behind the retaining dam, the deposition thickness, and the debris flow dynamic response significantly influence both with and without considering the effects of erosion. The results of this study are similar to existing literature and data, with the numerical analysis being consistent with the physical simulation tests in the existing literature, verifying the applicability of the SPH-DEM-FEM coupling analysis for assessing the debris flow impact retaining structures of erosion and sedimentation. The study also found that the dynamic response considering the debris flow impact and the retaining structures of erosion and sedimentation is more pronounced than when not considering erosion and sedimentation. Coupled numerical analysis can assess the potential effect of erosion and sedimentation, making a significant contribution to the assessment of the impact of debris flow and the design of retaining structures.

Funder

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3