Experimental and DEM-CFD Coupling Investigations on the Characteristics and Mechanism of Seepage Erosion for Cohesionless Soil

Author:

Su Hui12,Dai Da12ORCID,Zhang Ting3,Yang Jiaqi4,Mu Zhiyong12

Affiliation:

1. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China

2. Hebei Key Laboratory of Intelligent Water Conservancy, Handan 056038, China

3. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

Seepage erosion is one of the main reasons for the local collapse or instability of embankments. To investigate the characteristics and mechanism of seepage erosion for cohesionless soils, model tests using an independently developed seepage erosion device and numerical simulations based on a discrete element method-computational fluid dynamics (DEM-CFD) coupling model were carried out. The results show that the seepage erosion process of cohesionless soil could be characterized by four stages: stable seepage, upward migration of fine particles, boiling of sand samples, and erosion damage. The skeleton structure of a soil sample under seepage flow was continually changed due to the loss of fine soil particles, which resulted in a significant decrease in the sample strength and could, ultimately, lead to the failure of the sample. The results of this study can provide references and bases for the design, construction, and long-term service of embankments or earth dams under complex seepage conditions, reducing the risk of seepage erosion.

Funder

The Hebei Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3