Modeling of the Dammam outcrop fractures: Case study for fracture development in salt-cored structures

Author:

Al-Fahmi Mohammed,Michele L. Cooke,Cole John C.

Abstract

ABSTRACT The exposed Cenozoic carbonates of the Dammam Dome are studied to: (1) characterize fractures and associated structures; (2) interpret the fracture mechanism; and (3) gain insights into fracture development within dome-like structures in the subsurface of the Arabian Gulf region. The fieldwork is integrated with structural analysis of the near-surface horizons mapped from interpretations of 3-D reflection seismic and borehole logs. Fractures are mapped from the outcrops of the middle limestone unit of the Eocene Rus Formation. The outcrops are concentrated in the central, northern and western areas of the Dammam Dome. The fractures are interpreted as opening-mode, bed-bounded joints that form orthogonal sets in most areas. The primary (older) joint set (J1) developed in long lineaments, some of which can be traced for over 300 m across entire exposures. The J1 set is found to be broadly consistent in its trend over the dome, indicating that formation of J1 fractures was systematic and not influenced by local structural anomalies (including karst collapse) formed during the Miocene to Recent. The trend of the J1 set does not correlate with the NE-SW compressional orientation of regional stresses associated with the Zagros Orogeny. Field data interpretation, allied with analysis of dome’s growth and curvature, suggest that the overall joint pattern reflects the growth of the strata as a dome. In addition, the joint density is controlled by structural position on the dome and mechanical stratigraphy. The study results provide a first-order conceptual fracture model for the subsurface reservoirs to guide future development.

Publisher

GeoScienceWorld

Subject

Geology,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3