Rus detachment in Dammam Dome, Eastern Saudi Arabia: a new soft-sediment structure as a ‘sensitive stress sensor’ for the Zagros collision

Author:

Tranos Markos D.ORCID,Osman Mutasim S.

Abstract

Abstract This paper describes in detail hydroplastic structures, which are ‘odd’ kinematic indicators in the basal part of the Eocene Middle Rus Formation. Such structures were previously ignored or falsely interpreted. These hydroplastic structures are found in the massive limestone exposures on the King Fahd University of Petroleum and Minerals (KFUPM) campus. They occur in relation to a principal displacement zone along the boundary/interface between the Lower/Middle Rus, which is referred to as the Rus soft-sediment detachment. The structures are fist-sized vugs associated with carrot- or comet-trail imprints (VCT structures) which were previously translated calcite geodes that have been weathered out. VCT structures show transport/slip towards the NNW (345°) and are found on flat to low-dipping surfaces classified as Y, R and P shears with respect to the orientation of the Rus detachment. Palaeostress analysis indicates an Andersonian transtension stress regime, though it does not facilitate the activation of the Rus soft-sediment detachment. Detachment activity occurred due to the negative effective principal stress σ3′ and the abnormally low frictional coefficient caused by fluid pressure. The soft-sediment Rus detachment can be considered a ‘sensitive stress sensor’ for the Zagros collision since it indicates the Arabian platform’s instability in the wider area of the Dammam Dome during the Late Eocene. This instability is attributed to the inception of the Zagros collision, which was previously considered to occur during the Oligocene based on the well-established pre-Neogene unconformity.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3