Late Cenozoic faulting deformation of the Fanshi Basin (northern Shanxi rift, China), inferred from palaeostress analysis of mesoscale fault-slip data

Author:

Assie Konan RogerORCID,Wang Yu,Tranos Markos D.ORCID,Ma HuiminORCID,Kouamelan Kouamelan Serge,Brantson Eric Thompson,Zhou Liyun,Ketchaya Yanick Blaise

Abstract

AbstractThe Fanshi Basin is one of the NE–SW-striking depocentres formed along the northern segment of the fault-bounded Shanxi rift. In order to understand the crustal driving stresses that led to the basin formation and development, a palaeostress analysis of a large quantity of fault-slip data collected mainly at the boundaries of the basin was accomplished. The stress inversion of these data revealed three stress regimes. The oldest SR1 was a Neogene stress regime giving rise to a strike-slip deformation with NE–SW contraction and NW–SE extension. SR1 activated the large faults trending NNE–NE, i.e. (sub)parallel to the main strike of the Shanxi rift, as right-lateral strike-slip faults. It was subjected to the Shanxi rift before the activation of the Fanshi Basin boundary fault, i.e. the Fanshi (or Wutai) fault, as a normal fault. The next is a short-lived NE–SW extensional stress regime SR2 in early Pleistocene time, which shows the inception of the basin’s extension. A strong NW–SE to NNW–SSE extensional stress regime SR3 has governed the northern segment of the Shanxi rift since late Pleistocene time and is the present-day extension. It gave rise to the current half-graben geometry of the Fanshi Basin by activating the Fanshi (or Wutai) fault as a normal fault in the southern part of the graben. Because of the dominance of the NW–SE to NNW–SSE extension, which is perpendicular to the NE–SW extension, mutual permutations between σ3 and σ2 due to inherited fault patterns might have occurred while the crustal stresses in the Fanshi Basin changed from the SR1 to SR3 stress regimes.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3