Affiliation:
1. U.S. Geological Survey, 600 4th Street South, Saint Petersburg, FL 33701, USA
2. Cherokee Nation Technology Solutions, 600 4th Street South, Saint Petersburg, FL 33701, USA
Abstract
AbstractForaminiferal census data from Chincoteague Bay, Newport Bay, the salt marshes of Assateague Island, adjacent mainland salt marshes, and the inner-shelf, were assessed to determine the current assemblages in Chincoteague Bay, and how the different environments surrounding the bay, and the gradients within the bay, influence the microfossil distribution. Determining the current background distribution and its drivers allows for future comparisons to determine paleoenvironmental conditions, impacts from natural and anthropogenic pollution, and the influence of climate change. Foraminiferal census data were compared to sedimentological characteristics and environmental parameters, exhibiting strong correlations with salinity, sediment organic content, and grain-size. Foraminiferal distributions exhibited a gradient from an assemblage dominated by Elphidium cf. E. excavatum near Chincoteague inlet to an assemblage dominated by Ammonia parkinsoniana and Ammobaculites cf. Ab. exiguus in the more restricted central and northern portions of the bay. The sites closest to the mouth of Trappe Creek in Newport Bay, along the western side of Chincoteague Bay and in the central bay, had a greater relative abundance of dead agglutinated taxa compared with the majority of sites in Chincoteague Bay. Despite the overwhelming dominance of calcareous taxa throughout the bay, dissolution may affect the preservation potential of Cribroelphidium poeyanum and Haynesina germanica in the northern and central portions of Chincoteague Bay, as indicated by seasonal pH data. Similarly, the sandy back-barrier lagoonal sites exhibited relatively low densities, potentially a result of dissolution or mechanical destruction.
Subject
Paleontology,Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献