The Effects of Particle Segregation on Debris Flow Fluidity Over a Rigid Bed

Author:

Hotta Norifumi1,Iwata Tomoyuki2,Suzuki Takuro3,Sakai Yuichi4

Affiliation:

1. Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

2. Chiba Prefectural Government Office, 1-1 Ichiba-cho, Chuo-ku, Chiba City, Chiba 260-8667, Japan

3. Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

4. Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan

Abstract

ABSTRACT It is essential to consider the fluidity of a debris flow front when calculating its impact. Here we flume-tested mono-granular and bi-granular debris flows and compared the results to those of numerical simulations. We used sand particles with diameters of 0.29 and 0.14 cm at two mixing ratios of 1:1 and 3:7. Particle segregation was recorded with a high-speed video camera. We evaluated the fronts of debris flows at 0.5-second intervals. Then we numerically simulated one-dimensional debris flows under the same conditions and used the mean particle diameter when simulating mixed-diameter flows. For the mono-granular debris flows, the experimental and simulated results showed good agreement in terms of flow depth, front velocity, and flux. However, for the bi-granular debris flows, the simulated flow depth was less, and both the front velocity and flux were greater than those found experimentally. These differences may be attributable to the fact that the dominant shear stress was caused by the concentration of smaller sediment particles in the lower flow layers; such inverse gradations were detected in the debris flow bodies. Under these conditions, most shear stress is supported by smaller particles in the lower layers; the debris flow characteristics become similar to those of mono-granular flows, in contrast to the numerical simulation, which incorporated particle segregation with gradually decreasing mean diameter from the front to the flow body. Consequently, the calculated front velocities were underestimated; particle segregation at the front of the bi-granular debris flows did not affect fluidity either initially or over time.

Publisher

GeoScienceWorld

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3