Semiautomatic Algorithm to Map Tectonic Faults and Measure Scarp Height from Topography Applied to the Volcanic Tablelands and the Hurricane Fault, Western US

Author:

Scott Chelsea P.1ORCID,Giampietro Tiziano2,Brigham Cassandra3,Leclerc Frédérique2,Manighetti Isabelle2,Arrowsmith J Ramon1,Laó-Dávila Daniel A.4,Mattéo Lionel2

Affiliation:

1. School of Earth and Space Exploration Arizona State University P.O. Box 876004 Tempe Arizona 85287-6004 USA asu.edu

2. Université Côte d'Azur Observatoire de la Côte d'Azur IRD CNRS Géoazur 250 rue Albert Einstein Sophia Antipolis 06560 Valbonne France cnrs.fr

3. Department of Earth and Space Sciences University of Washington P.O. Box 351310 Seattle Washington 98195-1310 USA washington.edu

4. Boone Pickens School of Geology Oklahoma State University 105 Noble Research Center Stillwater OK 74078-3031 USA okstate.edu

Abstract

Abstract Observations of fault geometry and cumulative slip distribution serve as critical constraints on fault behavior over temporal scales ranging from a single earthquake to a fault’s complete history. The increasing availability of high-resolution topography (at least one observation per square meter) from air- and spaceborne platforms facilitates measuring geometric properties along faults over a range of spatial scales. However, manually mapping faults and measuring slip or scarp height is time-intensive, limiting the use of rich topography datasets. To substantially decrease the time required to analyze fault systems, we developed a novel approach for systematically mapping dip-slip faults and measuring scarp height. Our MATLAB algorithm detects fault scarps from topography by identifying regions of steep relief given length and slope parameters calibrated from a manually drawn fault map. We applied our algorithm to well-preserved normal faults in the Volcanic Tablelands of eastern California using four datasets: (1) structure-from-motion topography from a small uncrewed aerial system (sUAS; 20 cm resolution), (2) airborne laser scanning (25 cm), (3) Pléiades stereosatellite imagery (50 cm), and SRTM (30 m) topography. The algorithm and manually mapped fault trace architectures are consistent for primary faults, although can differ for secondary faults. On average, the scarp height profiles are asymmetric, suggesting fault lateral propagation and along-strike variations in the fault’s mechanical properties. We applied our algorithm to Arizona and Utah with a specific focus on the normal Hurricane fault where the algorithm mapped faults and other prominent topographic features well. This analysis demonstrates that the algorithm can be applied in a variety of geomorphic and tectonic settings.

Funder

Oklahoma State University

Agence Nationale de la Recherche

Université Côte d’Azur

Arizona State University

National Science Foundation

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3