A Study on the Electrical Characteristics of Fractured Gas Hydrate Reservoirs Based on Digital Rock Technology

Author:

Yang Hu1ORCID,Xue Xiaojun2,Chen Xianghui2,Xie Junyu2,Zheng Qinglong3

Affiliation:

1. School of Petroleum China University of Petroleum Karamay 834000 China cup.edu.cn

2. Western Drilling Engineering Company Geological Research Institute PetroChina Urumqi 830000 China petrochina.com.cn

3. Huabei Oilfield Company Engineering Technology Research Institute PetroChina Renqiu 062552 China petrochina.com.cn

Abstract

Abstract The electrical characteristics of fractured gas hydrate reservoirs were investigated through the diffusion-limited aggregation model, digital rock technology, and the finite element method. The results show that the fracture and gas hydrate have a significant effect on the electrical characteristics of rock partially saturated with gas hydrate, where the matrix pore and fracture mixed gas hydrate form a dual-porosity system. Due to the fracture and gas hydrate effect, the electrical characteristics of fractured gas hydrate reservoirs cannot be described well by traditional Archie equations. The resistivity index vs. water saturation curve of fractured gas hydrate reservoirs shows a nonlinear relationship for different gas hydrate pore habits (pore-filling, cementing, and grain-coating types), and this curve consists of two parts with different gas hydrate saturation exponents for pore-filling and cementing gas hydrate and presents a curve without a fixed water saturation exponent for grain-coating gas hydrate. Fractured gas hydrate reservoirs with different fracture apertures, different gas hydrate pore habits, and saturation features will lead to macroscopic electrical anisotropy. The results of theoretical analysis and numerical simulation show that the electrical anisotropy coefficient of fractured gas hydrate reservoirs is a function of gas hydrate saturation. The function curve consists of three segments with the turning point for pore-filling and cementing gas hydrate, and this curve can be divided into two parts through the turning point. The findings of this study can help for a better understanding of the electrical characteristics of fractured gas hydrate reservoirs, which have great significance for the exploration and development of gas hydrate resources.

Funder

Research Foundation of China University of Petroleum at Karamay

Xinjiang Uygur Autonomous Region University Scientific Research Project

Sichuan Regional Innovation Cooperation Project

Sichuan Science and Technology Program

Publisher

GeoScienceWorld

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3