Numerical Simulation of Electrical Properties for Pore-Scale Hydrate-Bearing Sediments with Different Occurrence Patterns and Distribution Morphologies

Author:

Lan Xixi12,Zou Changchun12ORCID,Peng Cheng12ORCID,Wu Caowei12ORCID,Zhang Yuanyuan12,Wang Shengyi12

Affiliation:

1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

2. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

Abstract

Characterizing the electrical properties of hydrate-bearing sediments, especially resistivity, is essential for reservoir identification and saturation evaluation. The variation in electrical properties depends on the evolution of pore habits, which in turn are influenced by the hydrate growth pattern. To analyze the relationship between hydrate morphology and resistivity quantitatively, different micromorphologies of hydrates were simulated at the pore scale. This study was also conducted based on Maxwell’s equations for a constant current field. During numerical simulation, three types of hydrate occurrence patterns (grain-cementing, pore-filling and load-bearing) and five types of distribution morphologies (circle, square, square rotated by 45°, ellipse and ellipse rotated by 90°) in the pore-filling mode were considered. Moreover, the effects of porosity, the conductivity of seawater, the size of the pore-throat and other factors on resistivity are also discussed. The results show that the variation in resistivity with hydrate saturation can be broadly divided into three stages (basically no effect, slow change and rapid growth). Compared with the grain-cementing and pore-filling modes, the resistivity of the load-bearing mode was relatively high even when hydrate saturation was low. For high hydrate-saturated sediments (Sh > 0.4), the saturation exponent n in Archie equation was taken as 2.42 ± 0.2. The size of the throat is furthermore the most critical factor affecting resistivity. This work shows the potential application prospects of the fine reservoir characterization and evaluation of hydrate-bearing sediments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3