Diagnosis of Major Foliar Diseases in Black gram (Vigna mungo L.) using Convolution Neural Network (CNN)

Author:

Kalpana M.,Karthiba L.,Senguttuvan K.,Parimalarangan R.

Abstract

Background: Proper diagnosis of a foliar disease is a prerequisite to undertaking any crop protection strategy under field conditions. Poor diagnosis and a delay in confirmation in turn decrease the crop yield and increase the cost of plant protection. In this background, advanced machine learning techniques were used for diagnosis of major foliar diseases in black gram using image detection. Casually, black gram yields are highly reduced due to anthracnose and powdery mildew diseases up to 40-67%. To address the issues, the advanced disease identification method of Convolution Neural Network (CNN) is proposed for automated diagnosis in its early stages to assist farmers. Methods: Disease infected leaf samples and their images were collected from different cultivated areas of Tanjore district, Tamil Nadu, India. The image noises were removed and enhanced to improve the accuracy of the training network. A Convolution Neural Network was built with five layers to work on disease images. The first stage of training is to load the image set for training, establish the learning rate, run the optimizer and compile the training convolution model. The final part is to save the loss and accuracy during the training process and evaluate the accuracy of the model. To improve the training learning rate, the Adam optimizer and RMSprop algorithm are used to dynamically adjust the learning rate. The image dataset holds a total of 2002 images of black gram anthracnose and powdery mildew for evaluation. Result: The experiment result showed that the accuracy of disease detection in black gram is about 92.50 per cent with a Precision: 97.14 per cent, Recall: 87.17 per cent, F1 score: 91.89 per cent which proves that convolutional neural network has a faster training speed and higher accuracy. In addition, the proposed method is less time consuming, an early detection tool for the farmers to identify the anthracnose and powdery mildew in black gram leaf which is essential for the application of proper disease management strategies and reduction of yield loss and aids in promotion of smart agriculture.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in genomic-driven breeding for improving the disease and insect pest resistance in black gram (Vigna mungo);Physiological and Molecular Plant Pathology;2024-09

2. An Evaluation of Various Machine Learning Approaches for Detecting Leaf Diseases in Agriculture;LEGUME RESEARCH - AN INTERNATIONAL JOURNAL;2024-02-01

3. Applying Deep Convolutional Neural Network for Classification of Black Gram Plant Leaf Disease;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3