An Evaluation of Various Machine Learning Approaches for Detecting Leaf Diseases in Agriculture

Author:

Cho Ok-hue

Abstract

Background: Machine learning has shown remarkable promise in recent years for use in areas such as pattern detection and categorization. The diagnosis of diseases is crucial in agriculture since they are a natural occurrence in plants. The easiest and most effective way to identify crop disease is through the use of image processing, computer vision and machine learning techniques. Methods: To identify and categorize cotton leaf diseases, the study compares the effectiveness of established techniques like Support Vector Machine (SVM) and random forest with state-of-the-art techniques like neural network (CNN) methods and architectures like Inceptionv3, VGG16 and RasNet50 with data augmentation and transfer learning. Result: The models were trained with four distinct types of plant photos that were manually gathered from a government agency and a farm. It was also noted that as the quantity of training data rose, so performed the resultant models.

Publisher

Agricultural Research Communication Center

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Algorithms for Early Detection of Legume Crop Disease;LEGUME RESEARCH - AN INTERNATIONAL JOURNAL;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3