Abstract
For a bounded linear operator $T$ acting on acomplex infinite dimensional Hilbert space $\h,$ we say that $T$is $m$-quasi-class $A(k)$ operator for $k>0$ and $m$ is apositive integer (abbreviation $T\in\QAkm$) if$T^{*m}\left((T^*|T|^{2k}T)^{\frac{1}{k+1}}-|T|^2\right)T^m\geq0.$ The famous {\it Fuglede-Putnam theorem} asserts that: the operator equation$AX=XB$ implies $A^*X=XB^*$ when $A$ and $B$ are normal operators.In this paper, we prove that if $T\in \QAkm$ and $S^*$ isan operator of class $A(k)$ for $k>0$. Then $TX=XS$, where $X\in\bh$ is an injective with dense range implies $XT^*=S^*X$.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献