Affiliation:
1. Department of Mathematics-Faculty of Science P.O.Box()- Mu’tah university- Al-Karak, Jordan
Abstract
Let A and B be positive operators and 0 < q ? 1. In this paper, we shall
show that if Aq?0 ? (A?0/2B?0A?0/2) q?0/?0+?0 and (B?0/2A?0B?0/2) q?0/?0+?0
? Bq?0 hold for fixed ?0 > 0 and ?0 > 0. Then the following inequalities
hold: Aq1? ? (A?/2B?A?/2) q1?/?+? and (B?/2A?B?/2) q1?/?+? ? Bq1? for all ?
? ?0, ? ? ?0 and 0 < q1 ? q. Also, we shall show a normality of class p-A(s,
t) for s > 0, t > 0 and 0 < p ? 1. Moreover, we shall show that if T or T*
belongs to class p-wA(s, t) for some s > 0, t > 0 and 0 < p ? 1 and S is an
operator for which 0 ? W(S) and ST = T*S, then T is self-adjoint.
Publisher
National Library of Serbia
Reference26 articles.
1. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13(1990) 307-315.
2. T. Ando, On some operator inequalities, Math. Ann. 279 (1987) 157-159.
3. Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chin Q J Math. 20(2005) 79-84.
4. C. Yang and Y. Zhao, on class wF(p, r, q) operators and quasisimilarity, J. Ineq. Pure Applied Math. Volume 8 (2007), Issue 3, Article 90, 7 pp.
5. M. Chō, M.H.M. Rashid, K. Tanahashi and A. Uchiyama, Spectrum of class p-wA(s, t) operators, Acta Sci. Math. (Szeged) 82 (2016) 641-649.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献