EXPERIMENTAL FORCED SOLAR THIN LAYER GINGER DRYING

Author:

Kumar Mahesh

Abstract

In this research paper, the convective and the evaporative heat transfer coefficients of ginger (zingiber officinale) drying in an indirect solar cabinet dryer under the induced forced convection mode is presented. Experiments were conducted during the month of March 2015 under the climatic conditions of Hisar, India (29°5’5”N latitude and 75°45’55”E longitude). The experimental data obtained for solar drying of a constant ginger mass of 150 g has been used to determine constants ‘C’ and ‘n’ in the Nusselt number expression using linear regression analysis; consequently, the convective and the evaporative heat transfer coefficients have been evaluated. The average value of constants ‘C’ and ‘n’ were evaluated as 0.999 and 0.318, respectively. The average values of the convective and the evaporative heat transfer coefficients were found to be 3.95 W/m2 °C and 160.47 W/m2 °C, respectively, for the given mass samples of ginger. The average collector efficiency was observed to be 14.5%. The experimental error in terms of percentage uncertainty was found to be 20.87%.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental ginger drying by a novel mixed-mode vertical solar dryer under partial and fully loaded conditions;Innovative Food Science & Emerging Technologies;2024-07

2. Indoor Forced Convection Drying of Giloy Stem: An Experimental Investigation;2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2024-06-14

3. Advancements in ginger drying technologies;Journal of Stored Products Research;2023-01

4. Fabrication and Performance Evaluation of Solar Tunnel Dryer for Ginger Drying;International Journal of Photoenergy;2022-10-19

5. Application of spices in foods: consumer preferences, knowledge of health benefits, and quality of dried ginger;Cogent Food & Agriculture;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3