Abstract
Common crossing rails are subjected to a rapid deterioration of the rolling surface due to a dynamic loading of trains. The present study is devoted to an experimental study of the displacement and rail strain measurements in the common crossing. The experimental measurements were carried out for two stiff common crossings under the dynamic loading of high-speed train for the velocity range of 54-254 km/h. The results showed 2.5 times increase of the maximal displacements within the velocity range. The absence of the difference in the displacements between the trailing and the facing travel direction is explained with the relative displacement measurements between the rail and the sleeper and the different dynamic impact loading for the wing rail. The proposed model-based analysis of the absolute measurement of rail strain enables us to estimate the dynamic factor under the impact loading. The wing rail for trailing direction is almost twice as highly loaded as the frog rail for the facing direction. The maximal dynamic factor for the trailing direction shows almost no change for the velocities of more than 200 km/h.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献