VNS-BASED ALGORITHMS FOR THE CENTROID-BASED CLUSTERING PROBLEM

Author:

Rozhnov Ivan P.ORCID,Orlov Victor I.,Kazakovtsev Lev A.ORCID

Abstract

The k-means algorithm with the corresponding problem formulation is one of the first methods that researchers use when solving a new automatic grouping (clus-tering) problem. Its improvement, modification and combination with other algorithms are described in the works of many researchers. In this research, we propose new al-gorithms of the Greedy Heuristic Method, which use an idea of the search in variable neighborhoods for solving the classical cluster analysis problem, and allows us to obtain a more accurate and stable result of solving in comparison with the known algorithms. Our computational experiments show that the new algorithms allow us to obtain re-sults with better values of the objective function value (sum of squared distances) in comparison with classical algorithms such as k-means, j-means and genetic algorithms on various practically important datasets. In addition, we present the first results for the GPU realization of the Greedy Heuristic Method.

Publisher

University of Nis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3