Self-Configuring (1 + 1)-Evolutionary Algorithm for the Continuous p-Median Problem with Agglomerative Mutation

Author:

Kazakovtsev LevORCID,Rozhnov Ivan,Shkaberina Guzel

Abstract

The continuous p-median problem (CPMP) is one of the most popular and widely used models in location theory that minimizes the sum of distances from known demand points to the sought points called centers or medians. This NP-hard location problem is also useful for clustering (automatic grouping). In this case, sought points are considered as cluster centers. Unlike similar k-means model, p-median clustering is less sensitive to noisy data and appearance of the outliers (separately located demand points that do not belong to any cluster). Local search algorithms including Variable Neighborhood Search as well as evolutionary algorithms demonstrate rather precise results. Various algorithms based on the use of greedy agglomerative procedures are capable of obtaining very accurate results that are difficult to improve on with other methods. The computational complexity of such procedures limits their use for large problems, although computations on massively parallel systems significantly expand their capabilities. In addition, the efficiency of agglomerative procedures is highly dependent on the setting of their parameters. For the majority of practically important p-median problems, one can choose a very efficient algorithm based on the agglomerative procedures. However, the parameters of such algorithms, which ensure their high efficiency, are difficult to predict. We introduce the concept of the AGGLr neighborhood based on the application of the agglomerative procedure, and investigate the search efficiency in such a neighborhood depending on its parameter r. Using the similarities between local search algorithms and (1 + 1)-evolutionary algorithms, as well as the ability of the latter to adapt their search parameters, we propose a new algorithm based on a greedy agglomerative procedure with the automatically tuned parameter r. Our new algorithm does not require preliminary tuning of the parameter r of the agglomerative procedure, adjusting this parameter online, thus representing a more versatile computational tool. The advantages of the new algorithm are shown experimentally on problems with a data volume of up to 2,000,000 demand points.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference109 articles.

1. Facility Location: Applications and Theory;Drezner,2004

2. Distances, metrics and cluster analysis

3. A Generalization of the Minkowski Distance and a New Definition of the Ellipsehttps://arxiv.org/abs/1903.09657v1

4. Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization

5. On the point for which the sum of the distances to n given points is minimum

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3