Author:
Jovanović Vesna,Janošević Dragoslav,Pavlović Jovan
Abstract
The paper defines the general mathematical model of hydraulic excavators for determining the boundary and possible digging resistances and equivalent loads of the axial bearing of the slewing platform drive mechanism throughout the excavator’s working area. Using a developed mathematical model and program, in the case of a 100000 kg hydraulic excavator with a shovel manipulator bucket volume of 6,5 m3, a detailed analysis was performed to examine the influence of the position and digging resistance on the loading of the axial bearing of the excavator slewing platform drive mechanism. The results of the performed analysis show that the equivalent loads, relevant for the selection of axial bearing of the excavator slewing platform, occur in the zone of the working area when the kinematic chain of the excavator has positions in which the manipulator mechanisms have coordinated interaction when they can overcome the greatest resistance forces in the stable operation of the excavator.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献