DYNAMIC ANALYSIS OF THE RIGID-FLEXIBLE EXCAVATOR MECHANISM BASED ON VIRTUAL PROTOTYPE

Author:

Yuan Yongliang,Ren Jianli,Wang Zhenxi,Mu Xiaokai

Abstract

In this paper, the excavator’s dynamic performance is considered together with the study of its trajectory, stress distribution and vibration. Many researchers have focused their study on the kinematics principle while a few others focused their work on dynamic performance, especially the vibration analysis. Previous studies of dynamic performance analysis have ignored the vibration effects. To address these challenges, the rigid-flexible coupling model of the excavator attachment is established and carried out based on virtual prototyping in this study. The dipper handle, the boom and the hoist rope are modeled as a flexible multi-body system for structural strength. The other components are modeled as a rigid multi-body system to catch the dynamic characteristics. The results show that the number of flexible bodies has little effect on the excavation trajectory. The maximum stress determined for the dipper handle and the boom are 96.45 MPa and 212.24 MPa, respectively. The dynamic performance of the excavator is greatly influenced by the clearance and is characterized by two phases: as the clearance decreases, the dynamic response decreases at first and then increases.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3