ON THE INFLUENCE OF MULTIPLE EQUILIBRIUM POSITIONS ON BRAKE NOISE

Author:

Koch SebastianORCID,Köppen Emil,Gräbner Nils,Von Wagner Utz

Abstract

Brake noise, especially brake squeal, has been a subject of intensive research both in industry and academia for several decades. Nevertheless, the state of the art simulations does not provide a predictive tool, and extensive experimental investigations are still necessary to find an appropriate design. Actual investigations focus on the consideration of nonlinearities which are in fact essential for this phenomenon. Unfortunately, by far not all relevant effects caused by nonlinearities are known. One of these nonlinear effects that the actual research focuses on is the limit cycle behavior representing squeal. In contrast to this, the actual paper considers the influence of the equilibrium position established while applying the brake pressure. The elements of the brake, namely, the carrier, caliper and pad, are highly nonlinear and elastically coupled and allow for multiple equilibrium positions depending e.g. on the initial conditions and transient application of the brake pressure while the frictional contact between the pads and the disk may excite small amplitude self-excited vibrations around this equilibrium, i.e. squeal. The current paper establishes a method and corresponding setup, to measure the position engaged by the brake components using an optical 3D-measuring system. Subsequently, it is demonstrated that in fact different equilibrium positions can be engaged for the same operation parameters and that the engaged position can be decisive for the occurrence of squeal. In fact, certain positions result in squeal while others do not for the same operation parameters. Taking this effect into consideration may have significant consequences for the design of brakes as well as simulation and experimental investigation of brake squeal.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3