A minimal model for the influence of equilibrium positions on brake squeal

Author:

Koch Sebastian1,Gräbner Nils1,von Wagner Utz1

Affiliation:

1. Department of Applied Mechanics, Chair of Mechatronics and Machine Dynamics (MMD) Technische Universität Berlin Berlin Germany

Abstract

AbstractThe phenomenon brake squeal has been an ongoing topic for decades, both in the automotive industry and in science. Although there is agreement on the excitation mechanism of brake squeal, namely self‐excitation due to frictional forces between the disk and the pad, in the subject of squeal it is very complex to discover all relevant effects and to take them into account. Several of these problems are related to nonlinearities, for example, in the contact between pad and disk or drum or in the behavior of the brake pad material. One of these nonlinear effects, which has been almost completely neglected so far, is that the brake can engage, mainly due to the bushing and joint elements within the brake, different equilibrium positions. This in fact has serious influence on the noise behavior as shown in experimental studies. For example, it is observed in experiments that, despite identical operating parameters, squeal sometimes occurs and sometimes not. In initial experimental studies, this could be related to the engaged equilibrium position. Following these experimental studies, the present paper introduces a minimal model by extending the well‐known minimal model by Hoffmann et al. by corresponding elements and nonlinearities allowing the system to engage different equilibrium positions. As will be presented, the stability behavior strongly depends on the engaged equilibrium position. Therefore, the minimal model represents the key experimentally observed issues. Additionally, a limit cycle behavior can also be observed.

Publisher

Wiley

Subject

Applied Mathematics,General Physics and Astronomy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3