Author:
Zainuddin Muhammad Izzat Izzuddin bin, ,Judi Hairulliza Mohamad
Abstract
Academic monitoring is implemented at higher learning institutions to allow students and instructors to communicate academically, especially learning progress. However, the system cannot monitor student performance on an ongoing basis, such as class attendance, continuous assessment records and assignment submissions. Personalised learning analytics use student-generated data and analytical models to gather learning patterns so that instructors may advise on students’ learning. Although various studies provide insight into the analytical framework of learning, attention to self-regulated meaningful learning is still insufficient. This study aims to propose a personalised learning analytics system designed by a student that unifies the self-regulated learning components: plan, monitor, and evaluate the learning commitment, and activates alert of student’s achievement for close monitoring and further intervention by the instructor. For this reason, the procedure for analysing the learning pattern for experiment subjects such as Internet of Things, Data Analysis and System Management. Personalised learning analytics has been designed to deliver an interactive learning analytics environment that stimulates students to focus on the achievement of problem-solving skills and enhance the instructor’s decision to support students’ concern.
Subject
Computer Science Applications,Education
Reference30 articles.
1. [1] M. Saqr, "Using learning analytics to understand and support collaborative learning," Stockholm University PhD Thesis, 2018.
2. [2] M. Axelsen, P. Redmond, E. Heinrich, and M. Henderson, "The evolving field of learning analytics research in higher education: From data analysis to theory generation, an agenda for future research," Australas. J. Educ. Technol., vol. 36, no. 2, pp. 1-7, 2020, doi: 10.14742/AJET.6266.
3. [3] O. Viberg, M. Khalil, and M. Baars, "Self-regulated learning and learning analytics in online learning environments: A review of empirical research," ACM Int. Conf. Proceeding Ser., no. March, pp. 524-533, 2020, doi: 10.1145/3375462.3375483.
4. [4] E. De Quincey, T. Kyriacou, C. Briggs, and R. Waller, "Student centred design of a learning analytics system," ACM International Conference Proceeding Series, 2019, pp. 353-362, doi: 10.1145/3303772.3303793.
5. [5] A. Hamdan et al., "Personalized learning environment: Integration of web technology 2.0 in achieving meaningful learning," J. Pers. Learn., vol. 1, no. 1, pp. 13-26, 2015.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献