Discovering Sentiments and Latent Themes in the Views of Faculty Members towards the Shift from Conventional to Online Teaching Using VADER and Latent Dirichlet Allocation

Author:

Casillano Niel Francis B.,

Abstract

This research primarily aimed at determining the frequently occurring words, the sentiment and the underlying latent themes in the responses of faculty members towards the shift from conventional to online teaching using data mining techniques. Orange data mining software was utilized to preprocess and analyze the data. VADER sentiment analysis and Latent Dirichlet Allocation Topic Modelling were used to generate the overall sentiment and the themes of the teachers’ responses. Results revealed that the most frequently occurring words in the responses of teachers were blended, online, students, teaching, teachers, learning, difficult, challenging, internet, and connectivity. Twenty-three (23) out of 37 (62%) responses were determined to have negative polarity making the general sentiment of faculty members towards the shift to online learning negative. The following themes were generated after the application of Latent Dirichlet Allocation Topic Modeling technique: unexpected shift from conventional to blended teaching, Mental and Physical Health Issues Related to the Implementation of Blended Learning, Online tools used in the conduct of Online Classes, Difficulties and Challenges in the Conduct of Blended/Online Learning, Slow Internet Connectivity as a Major Impediment in the Conduct of Online Teaching.

Publisher

EJournal Publishing

Subject

Computer Science Applications,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3