Auxin‐dependent regulation of cell division rates governs root thermomorphogenesis

Author:

Ai Haiyue1ORCID,Bellstaedt Julia1,Bartusch Kai Steffen2ORCID,Eschen‐Lippold Lennart1ORCID,Babben Steve1,Balcke Gerd Ulrich3,Tissier Alain3ORCID,Hause Bettina3ORCID,Andersen Tonni Grube4ORCID,Delker Carolin1ORCID,Quint Marcel1ORCID

Affiliation:

1. Institute of Agricultural and Nutritional Sciences Martin Luther University Halle‐Wittenberg Halle (Saale) Germany

2. Department of Biology, Institute of Molecular Plant Biology ETH Zürich Zürich Switzerland

3. Department of Cell and Metabolic Biology Leibniz Institute of Plant Biochemistry Halle (Saale) Germany

4. Max Planck Institute for Plant Breeding Research Cologne Germany

Abstract

AbstractRoots are highly plastic organs enabling plants to adapt to a changing below‐ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above‐ground thermomorphogenesis is enabled by thermo‐sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot‐derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature‐sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.

Funder

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Rosa Luxemburg Stiftung

Max-Planck-Gesellschaft

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3