Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens

Author:

Hassan Arshia Zernab1,Ward Henry N2,Rahman Mahfuzur1,Billmann Maximilian13ORCID,Lee Yoonkyu2,Myers Chad L12ORCID

Affiliation:

1. Department of Computer Science and Engineering University of Minnesota – Twin Cities Minneapolis MN USA

2. Bioinformatics and Computational Biology Graduate Program University of Minnesota – Twin Cities Minneapolis MN USA

3. Institute of Human Genetics University of Bonn, School of Medicine and University Hospital Bonn Bonn Germany

Abstract

AbstractCRISPR‐Cas9 screens facilitate the discovery of gene functional relationships and phenotype‐specific dependencies. The Cancer Dependency Map (DepMap) is the largest compendium of whole‐genome CRISPR screens aimed at identifying cancer‐specific genetic dependencies across human cell lines. A mitochondria‐associated bias has been previously reported to mask signals for genes involved in other functions, and thus, methods for normalizing this dominant signal to improve co‐essentiality networks are of interest. In this study, we explore three unsupervised dimensionality reduction methods—autoencoders, robust, and classical principal component analyses (PCA)—for normalizing the DepMap to improve functional networks extracted from these data. We propose a novel “onion” normalization technique to combine several normalized data layers into a single network. Benchmarking analyses reveal that robust PCA combined with onion normalization outperforms existing methods for normalizing the DepMap. Our work demonstrates the value of removing low‐dimensional signals from the DepMap before constructing functional gene networks and provides generalizable dimensionality reduction‐based normalization tools.

Funder

Deutsche Forschungsgemeinschaft

National Institutes of Health

National Science Foundation

University of Minnesota

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Information Systems

Reference65 articles.

1. 10x Genomics(2019)5k peripheral blood mononuclear cells (PBMCs) from a healthy donor (v3 chemistry) single cell gene expression dataset by Cell Ranger 3.0.2. (https://support.10xgenomics.com/single‐cell‐gene‐expression/datasets/3.0.2/5k_pbmc_v3). [DATASET]

2. ArnoldJB DarocziG WerthB WeitznerB KunstJ AuguieB RudisB WickhamH TalbotJ LondonJ(2021)ggthemes: Extra Themes Scales and Geoms for ‘ggplot2’. R package v4.2.4.

3. AuguieB AntonovA(2017)gridExtra: miscellaneous functions for ‘Grid’ graphics. R package v2.3.

4. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale

5. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3