Vibrio natriegens genome‐scale modeling reveals insights into halophilic adaptations and resource allocation

Author:

Coppens Lucas1,Tschirhart Tanya2ORCID,Leary Dagmar H2ORCID,Colston Sophie M2,Compton Jaimee R2ORCID,Hervey William Judson2ORCID,Dana Karl L3,Vora Gary J2,Bordel Sergio4,Ledesma‐Amaro Rodrigo1ORCID

Affiliation:

1. Department of Bioengineering and Imperial College Centre for Synthetic Biology Imperial College London London UK

2. US Naval Research Laboratory Center for Bio/Molecular Science and Engineering Washington DC USA

3. NOVA Research Inc Alexandria VA USA

4. Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering University of Valladolid Valladolid Spain

Abstract

AbstractVibrio natriegens is a Gram‐negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism‐specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome‐scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry‐based proteomics data confirmed the translation of at least 76% of the enzyme‐encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP‐generating system and the discovery of a role for a sodium‐dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.

Funder

British Council

European Research Council

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3