Influence of High Power Nd: YAG Laser on Hardness and Surface Properties of Zirconium Silicate

Author:

Abstract

Different parameters like irradiated area, irradiation time, laser wavelength, pulse energy, and the nature of the irradiated material determine largely the effect of the laser-matter interaction. In this, study the influence of high power Nd: YAG laser irradiation on the hardness and surface properties of zirconium silicate (ZrSiO4) ceramics was investigated. Specimens of zirconium ceramic pieces were divided into four samples depend on irradiation duration as follows: one reference sample and three samples treated with Nd: YAG laser at irradiation times vary from 3 to 5 minutes. The irradiation was done with 60 W output power. The hardness and tensile strength were determined and the optical properties were characterized by UV-vis spectroscopy, also EDX spectra were carried out. The obtained results revealed that high power (60 W) Nd: YAG laser provides higher hardness compared to the reference sample surface. Increasing irradiation time resulted in the higher hardness of the ceramic surfaces. EDX results showed that laser irradiation does not change the chemical surface composition of ceramics. Moreover, an increase in transmittance of the irradiated zirconium silicate in the visible and near-infrared range was also found using UV-vis spectroscopy.

Publisher

Universe Publishing Group - UniversePG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. mpact of laser surface modification on polycrystalline silicon photovoltaic cell by means of CO2 laser;Material Science & Engineering International Journal;2023-04-25

2. Investigation of the Dimensions of Making Brillouin Laser in Optical Fiber;Australian Journal of Engineering and Innovative Technology;2023-03-25

3. Impact of Single Wavelength (532 nm) Irradiation on the Physicochemical Properties of Sesame Oil;Journal of Materials Science and Chemical Engineering;2022

4. Some Characterizations of the Extended Beta and Gamma Functions: Properties and Applications;International Journal of Material and Mathematical Sciences;2021-09-30

5. Assessment of Radiation Risk on Healthcare Workers and Public in & around Two Largest Hospital Campuses of Bangladesh;European Journal of Medical and Health Sciences;2021-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3