Regression Models for Estimating Aboveground Biomass and Stand Volume Using Landsat-Based Indices in Post-Mining Area

Author:

Priatama A R, ,Setiawan Y

Abstract

This paper describes the use of remotely sensed data to measure vegetation variables such as basal area, biomass and stand volume. The objective of this research was developed regression models to estimate basal area (BA), aboveground biomass (AGB), and stand volume (SV) using Landsat-based vegetation indices. The examined vegetation indices were SAVI, MSAVI, EVI, NBR, NBR2 and NDMI. Regression models were developed based on least-squared method using several forms of equation, i.e., linear, exponential, power, logarithm and polynomial. Among those models, it was recognized that the best fit of model was obtained from the exponential model, log (y) = ax + b for estimating BA, AGB & SV. The MSAVI had been identified as the most accurate independent variable to estimates basal area with R² of 0.70 and average verification values of 16.39% (4%32.66%); while the EVI become the best independent variable for estimating aboveground biomass (AGB) with R2 of 0.72 and average of verification values of 18,10% (9%-28.01%); and the NDMI was recognized to be the best independent variable to estimate stand volume with R2 of 0.69 and average of verification values of 24.37% (-15%-38.11%).

Publisher

Department of Forest Management

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomass Stock Estimation Using Landsat 8 Imagery in Bukit Tigapuluh National Park, Riau;IOP Conference Series: Earth and Environmental Science;2024-01-01

2. Modeling and Predicting Transistor Aging Under Workload Dependency Using Machine Learning;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-09

3. Predicting eucalyptus plantation growth and yield using Landsat imagery in Minas Gerais, Brazil;Ecological Informatics;2023-07

4. Modeling and Mapping of Aboveground Biomass and Carbon Stock Using Sentinel-2 Imagery in Chure Region, Nepal;International Journal of Forestry Research;2023-05-19

5. Generating Jigsaw Puzzles and an AI Powered Solver;Modelling and Development of Intelligent Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3